STEREOSPECIFIC SYNTHESIS OF (5E)-PGE ${ }_{2}$ BY PALLADIUM-CATALYZED DECARBOXYLATIVE 2-ALKENYLATION OF 2-ALKENYLOXYCARBONYLATED CYCLOPENTANONE DERIVATIVE ${ }^{1)}$

T. Tanaka, N. Okamura, K. Bannai, A. Hazato, S. Sugiura, K. Manabe, and S. Kurozumi* Institute for Bio-Medical Research, Teijin Ltd., Asahigaoka, Hino, Tokyo 191, Japan

Summary: (5E)-Prostaglandin E_{2} methyl ester was synthesized from (R)-4-t-butyldimethylsiloxy-2-cyclopentenone by in situ 2-alkenyloxycarbonylation of the organocopper conjugate-addition adduct followed by intramolecular palladium-catalyzed decarboxylative 2-alkenylation. A (E)-2-butenylated cyclopentanone derivative was obtained from either 2-[(E)- or (Z)-2-butenyloxycarbonyllcyclopentanone derivative under the similar reaction condition.

In the three-component coupling process ${ }^{2)}$ of prostaglandin (PG) synthesis starting from (R)-4-t-butyldimethylsiloxy-2-cyclopentenone (1), 3) the carboncarbon bond formation between the cyclopentanone ring and the α side-chain is the most important reaction as an enolate trapping step. The enolate trapping agents for this purpose are carboxylic acid chlorides, 4) methyl chloroformate, 5) aldehydes, 6) ketene bis(methylthio)acetal monoxide, ${ }^{7}$) alkenyl or alkynyl halides, ${ }^{8}$) nitro-olefin, ${ }^{91}$ and allyl chloroformate. ${ }^{10)}$ The enolate trapping with allyl chloroformate followed by intramolecular palladium-catalyzed

Scheme $1 \quad\left(R=\operatorname{SiMe}_{2}^{\mathrm{t}} \mathrm{Bu}\right)$

decarboxylative allylation presented an indirect 2-allylation method of a 3,4disubstituted cyclopentanone ring. Extension of the indirect allylation ${ }^{10)}$ was applied to the synthesis of PGE_{2} skeleton using 2-alkenyloxycarbonylimidazole 3 as the enolate trapping agent (Scheme 1).

The enolate generated by the conjugate addition of the organocopper reagent ${ }^{11 \text {) of (E, } 3 \underline{S} \text {)-3-t-butyldimethylsiloxy-1-lithio-1-octene (2) to the }}$ chiral enone $1,[\alpha]_{D}^{24}+64.5^{\circ}$ (C $1.02, \mathrm{CH}_{3} \mathrm{OH}$), was trapped with $\mathrm{N}-[(\underline{Z})-6-$ methoxycarbonyl-2-hexenyloxycarbonyljimidazole (3) ${ }^{13 \mathrm{a})}$ (1.18 equiv, $-40^{\circ} \mathrm{C}, 3 \mathrm{~h}$) in THF containing hexamethylphosphoramide to give the corresponding 2 alkenyloxycarbonylated product 4, $[\alpha]_{D}^{22}-27.8^{\circ}$ (c $0.58, ~ \mathrm{CH}_{3} \mathrm{OH}$), in 41% yield. Treatment of the product 4 with 5 molq of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in $\operatorname{DMF}\left(50^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$ provided protected (5E)-PGE 5 (64%), $[\alpha]_{D}^{2 ?}+42^{\circ}\left(\underline{C} 0.81, \mathrm{CH}_{3} \mathrm{OH}\right)$, 14) which afforded (5E)- PGE_{2} methyl ester 6 (85%), $[\alpha]_{\mathrm{D}}^{24-62^{\circ}}$ (C $0.90, \mathrm{CH}_{3} \mathrm{OH}$) after deprotection (HF -pyridine in $\mathrm{CH}_{3} \mathrm{CN}$, r.t., 3 h). The 5E-geometry of the product was confirmed by the ${ }^{13} \mathrm{C}$ NMR measurement. The product 6 showed the chemical shifts at $\delta 31.7$ and 30.1 ppm corresponding to $\mathrm{C}-7$ and $\mathrm{C}-4$ carbon atoms (PG numbering), respectively, whereas an authentic $P G E_{2}$ methyl ester 7, $[\alpha]_{D}^{20}-71.7^{\circ}\left(\underline{C} 1.04, \mathrm{CH}_{3} \mathrm{OH}\right), 6 \mathrm{C}$) showed the corresponding higher shifts at $\delta 25.2$ and 26.5 ppm. These higher field shifts were caused by γ-steric compression effect of the carbons with (\underline{Z})-geometrical surroundings. This olefin-geometry was also supported by the fact that 6 was less polar than natural PGE_{2} methyl ester 7 on a AgNO_{3}-impregnated thin layer chromatoplate. ${ }^{15)}$

In order to study the stereochemistry of the double bond in the indirect alkenylation product, we prepared (\underline{E})- and (Z2)-2-butenyl β-keto esters 10 and 12 from the chiral enone 1 as follows. A similar alkenyloxycarbonylation of the corresponding enolate with $N-[(E)-2$-butenyloxycarbonyl]imidazole (8), 13b) gave the E-isomer 10 (40\%) [${ }^{13} \mathrm{C}$ NMR for $\mathrm{C}-1, \mathrm{C}-4$ of (E)-2-butenyl: $\delta 66.1$, $17.7 \mathrm{ppm}]$. Another alkenyloxycarbonylation of the enolate by $\mathrm{N}-(2$-butynyloxycarbonyl)imidazole (9) ${ }^{13 b}$) afforded the acetylenic product 11 (46\%), which was hydrogenated by using of $5 \% \mathrm{Pd}_{\mathrm{BaSO}}^{4}$ in $\mathrm{CH}_{3} \mathrm{OH}$ containing guinoline to give the \underline{Z}-isomer 12 (76\%) [${ }^{13} \mathrm{C}$ NMR for $\mathrm{C}-1, \mathrm{C}-4$ of (Z)-2-butenyl: $\delta 60.7,13.1$ ppm]. Both \underline{E} and \underline{Z} compounds 10 and 12 were treated with a catalytic amount (5 mol\%) of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in $\operatorname{DMF}\left(50^{\circ} \mathrm{C}, 1 \mathrm{~h}\right.$ and $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$, respectively) to afford the same (E)-2-butenylated product 13 in 58% and 63% yield, respectively. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 13 , signals corresponding to $C-1$ and $C-4$ carbons of (E)-2-butenyl group were observed at $\delta 30.5$ and 17.9 ppm , respectively. A simultaneous formation of a rearranged product 14 (8-9\%) together with a by-product 15 in these reactions suggested π-allylpalladium intermediate ${ }^{16)}$ in the decarboxylative 2 -alkenylations (Scheme 2). On the other hand, in the reported intermolecular alkenylation of enolate species, both examples of the inversion ${ }^{17}$) and the retention ${ }^{18)}$ of olefin geometry are known.

(E)

8, $\mathrm{R}^{\prime}=-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
9, $\mathrm{R}^{\prime}=\cdot \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{3}$

(E)

10, $\mathrm{R}^{\prime}=-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
11, $\mathrm{R}^{\prime}=-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{3}$
12, $\mathrm{R}^{\prime}=-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
($\mathrm{R}=\mathrm{SiMe}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$)

Scheme $2 \quad\left(R=\operatorname{SiMe}_{2}{ }^{t} B u\right)$

This indirect E-2-alkenylation provides an alternative vicinal dialkylation method for enone systems. An application of this methodology was the convenient synthesis of ($5 \underline{E}$)- PGE_{2} which is less available from natural resources ${ }^{19 \text {) or by }}$ practical preparation.15)

REFERENCES AND NOTES

1. Prostaglandin Chemistry. XXIX. Part XXVIII: S. Sugiura, A. Hazato, T. Tanaka, N. Okamura, K. Bannai, K. Manabe, S. Kurozumi, M. Suzuki, and R. Noyori, Chem. Pharm. Bull., submitted for publication.
2. R. Noyori and M. Suzuki, Angew. Chem., 96, 854 (1984), Angew. Chem.. Int. Ed. Engl., 23, 847 (1984).
3. (a) T. Tanaka, S. Kurozumi, T. 'Ioru, S. Miura, M. Kobayashi, and s. Ishimoto, Tetrahedron, 32, 1713 (1976). (b) M. Gill and R. W. Rickards, Tetrahedron Lett., 1539 (1979). (c) R. Noyori, Pure Appl. Chem., 53, 2315 (1981).
4. (a) T. Tanaka, S. Kurozumi, T. Toru, M. Kobayashi, S. Miura, and S. Ishimoto, Tetrahedron Lett., 1535 (1975). (b) T. Tanaka, S. Kurozumi, T. Toru, M. Kobayashi, S. Miura, and S. Ishimoto, Tetrahedron, 33, 1105 (1977).
5. T. Toru, S. Kurozumi, T. Tanaka, S. Miura, M. Kobayashi, and S. Ishimoto, Tetrahedron Lett., 4087 (1976).
6. (a) G. Stork and M. Isobe, J. Am. Chem. Soc., 97, 6260 (1975).
(b) M. Suzuki, T. Kawagishi, T. Suzuki, and R. Noyori, Tetrahedron Lett., 23, 4057 (1982). (c) M. Suzuki, T. Kawagishi, and R. Noyori, ibid., 23, 5563 (1982). (d) M. Suzuki, A. Yanagisawa, and R. Noyori, ibid., 24, 1187 (1983). (e) M. Suzuki, A. Yanagisawa, and R. Noyori, ibid., 25, 1383 (1984).
7. R. Davis and K. G. Untch, J. Org. Chem., 44, 3755 (1979).
8. M. Suzuki, A. Yanagisawa, and R. Noyori, J. Am. Chem. Soc., 107, 3348 (1985).
9. (a) T. Tanaka, T. Toru, N. Okamura, A. Hazato, S. Sugiura, K. Manabe, S. Kurozumi, M. Suzuki, T. Kawagishi, and R. Noyori, ibid., 24, 4103 (1983). (b) T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, S. Kurozumi, M. Suzuki, and R. Noyori, ibid., 25, 4947 (1984).
10. A. Hazato, T. Tanaka, K. Watanabe, K. Bannai, T. Toru, N. Okamura, K. Manabe, A. Ohtsu, F. Kamimoto, and S. Kurozumi, Chem. Pharm. Bull., 33, 1815 (1985).
11. This vinylcopper reagent was prepared by treatment of (E, 3S)-3-t-butyldimethysiloxy-1-iodo-1-octene, ${ }^{12)}[\alpha]_{D}^{21}-30.6^{\circ}\left(\mathrm{c} 1.57, \mathrm{CCl}_{4}\right)$, with 2 equiv of t-butyllithium in ether at $-78^{\circ} \mathrm{C}$ for 1 h followed by addition of an ethereal solution of 1 -pentynylcopper (1 equiv) and hexamethylphosphoroustriamide (2 equiv).
12. (a) A. F. Kluge, K. G. Untch, and J. H. Fried, J. Am. Chem. Soc., 94, 7827 (1972). (b) R. Noyori, I. Tomino, and M. Nishizawa, J. Am. Chem. Soc., 101, 5843 (1979).
13. (a) This starting material was obtained (73\%) by reaction (r.t., 1 h , in THF) of N, N^{\prime}-carbonyldiimidazole with methyl (Z)-7-hydroxy-5-heptenoate which was prepared by hydrogenation (5\% $\mathrm{Pd}^{2}-\mathrm{BaSO}_{4}$ in $\mathrm{CH}_{3} \mathrm{OH}$ containing guinoline) of methyl 7-hydroxy-5-heptynoate in 96% yield. (b) Each compound 8 or 9 was similarly prepared by treatment of (E)-2-buten-1-ol or 2-butyn-1-ol with N, N-carbonyldiimidazole in 95% or 92%, respectively.
14. The corresponding PGE_{2} derivative with $5 \underline{Z}$ geometry exhibited $[\alpha]_{D}^{21}-52.7^{\circ}$ (c $1.28, \mathrm{CH}_{3} \mathrm{OH}$). ${ }^{6 \mathrm{C} \text {) }) ~}$
15. W. P. Schneider, G. L. Bundy, F. H. Lincoln, E. G. Daniels, and J. E. Pike, J. Am. Chem. Soc., 99, 1222 (1977).
16. (a) T. Shimizu, T. Yamada, and J. Tsuji, Tetrahedron Lett., 21, 3199 (1980). (b) T. Tsuda, Y. Chujyo, S. Nishi, K. Tawara, and T. Saegusa, J. Am. Chem. Soc., 102, 6381 (1980).
17. B. M. Trost and E. Keinan, Tetrahedron Lett., 21, 2591 (1980).
18. (a) E. Negishi, H. Matsushita, S. Chatterjee, and R. A. John, J. Org. Chem., 47, 3190 (1982). (b) E. Negishi and R. A. John, ibid., 48, 4098 (1983). (c) F. Luo and E. Negishi, Tetrahedron Lett., 26, 2177 (1985).
19. W. P. Schneider, R. D. Hamilton, and L. E. Rhuland, J. Am. Chem. Soc., 94, 2122 (1972).
